Abstract

Zinc-Nickel (Zn-Ni) electrodeposition has been carried out using direct current. Cathode current efficiency and deposit thickness were determined by weight measurement method. Influence of current density on the deposition process was also investigated. The morphologies of the deposits were studied using Scanning Electron Microscope and Field Emission Gun Scanning Electron Microscopes. Effect of temperature on the Ni content and morphologies of the deposits was also studied. Energy dispersive spectroscopy (EDX) was utilised to analyse the elemental composition of the deposits. It was found that temperature changes in the bath had a marked influence on the Ni content and morphology of the deposits. Deposit surface profile revealed non-uniform distribution of Ni in the deposits. Anomalous deposition behaviour was exhibited by the baths and Ni content of 10-15wt% for best corrosion performance was obtained between 60-75 g/l of NiCl2.6H2O. Normal deposition took place at current densities lower than 2A/dm2. Deposits with 12wt% Ni exhibited best corrosion performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call