Abstract

An infected skin wound caused by external injury remains a serious challenge in clinical practice. Wound dressings with the properties of antibacterial activity and potent regeneration capacity are highly desirable for wound healing. In this paper, a degradable, ductile, and wound-friendly Zn-MOF encapsulated methacrylated hyaluronic acid (MeHA) microneedles (MNs) array is fabricated through the molding method for promoting wound healing. Due to the damage capability against the bacteria capsule and oxidative stress of the zinc ion released from the Zn-MOF, such MNs array presents excellent antibacterial activity, as well as considerable biocompatibility. Besides, the degradable MNs array composed of photo-crosslinked MeHA possesses the superior capabilities to continuously and steadily release the loaded active ingredients and avoid secondary damage to the wound. Moreover, the low molecular weight hyaluronic acid (HA) generated by hydrolysis of MeHA is also conducive to tissue regeneration. Benefiting from these features, it has been demonstrated that the Zn-MOF encapsulated degradable MNs array can dramatically accelerate epithelial regeneration and neovascularization. These results indicate that the combination of MOFs and degradable MNs array is of great value for promoting wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.