Abstract

Ferromagnetic zinc ferrite nanocrystals at ambient temperature were synthesized via the thermal decomposition of metal−surfactant complexes. Characterization measurements including transmission electron microscopy and X-ray diffraction were performed for as-synthesized ZnFe2O4 particles. The sample has a relatively narrow size distribution with an average particle size of 9.8 ± 0.2 nm and standard deviation of 30%. The as-synthesized zinc ferrite nanocrystals are superparamagnetic at room temperature with a blocking temperature TB = 68 ± 2 K and a saturation magnetization MS = 65.4 emu·g-1 at T = 10 K, which are caused by the change in the inversion degree of the spinel structure. A coercive field of HC = 102 ± 5 Oe in the blocked state indicates small particle anisotropy, although evidence of surface spin canting was inferred from magnetization data in the as-synthesized ZnFe2O4 nanocrystals. Our results demonstrate that magnetic properties of magnetic particles can be largely modified by just changing p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call