Abstract

Neutrophils are key component of the innate immune system in vertebrates. Diverse transcription factors and cofactors act in a well-coordinated manner to ensure proper neutrophil development. Dysregulation of the transcriptional program triggering neutrophil differentiation is associated with various human hematologic disorders such as neutropenia, neutrophilia, and leukemia. In the current study we show the zinc finger protein Znf687 is a lineage-preferential transcription factor, whose deficiency leads to an impaired neutrophil development in zebrafish. Mechanistically, Znf687 functions as a negative regulator of gfi1aa, a pivotal modulator in terminal granulopoiesis, to regulate neutrophil maturation. Moreover, we found BRD4, an important epigenetic regulator, directly interacts with ZNF687 in neutrophils. Deficiency of brd4 results in similar defective neutrophil development as observed in znf687 mutant zebrafish. Biochemical and genetic analyses further reveal that instead of serving as a canonical transcriptional coactivator, Brd4 directly interacts and bridges Znf687 and Smrt nuclear corepressor on gfi1aa gene's promoter to exert transcription repression. In addition, the ZNF687-BRD4-SMRT-GFI1 transcriptional regulatory network is evolutionary conserved in higher vertebrate. Overall, our work indicates Znf687 and Brd4 are two novel master regulators in promoting terminal granulopoiesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call