Abstract
In this work, zinc was introduced to prepare Ni1-xZnxMoO4 (0 ≤ x ≤ 1) nanoflake electrodes to increase the energy density and improve the cycling stability for a wider range of applications of aqueous rechargeable nickel-zinc (NiZn) batteries. This was achieved using a facile hydrothermal method followed by thermal annealing, which can be easily scaled up for mass production. Owing to the unique nanoflake structures, improved conductivity, and tunable electronic interaction, excellent electrochemical performance with high specific capacitance and reliable cycling stability can be achieved. When the Zn doping is 25%, the Ni0.75Zn0.25MoO4 nanoflake electrode displays a high specific capacitance of 345.84 mA h g-1 (2490 F g-1) at a current density of 1 A g-1 and improved cycling stability at a high current density of 10 A g-1. NiZn cells assembled with Ni0.75Zn0.25MoO4 nanoflake electrodes and zinc electrodes have a maximum specific capacity of 344.7 mA h g-1 and an energy density of 942.53 W h kg-1. This design strategy for nickel-based electrode materials enables high-performance energy storage and opens up more possibilities for other battery systems in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.