Abstract

Rechargeable Zn batteries are promising energy storage alternatives for Li-ion batteries in part because of the high specific and volumetric capacities of Zn anodes, as well as their low cost, improved prospects for safety, and the fact that they are environmentally friendly. Development efforts, however, have focused mostly on aqueous electrolyte systems, which are intrinsically limited by the narrow electrochemical potential window of water. As a consequence, the use of alternative non-aqueous electrolytes has attracted a growing level of interest with the hope that they may provide higher operational voltages, which potentially could provide viable pathways to high-energy and high-power density Zn batteries. With regard to the latter, the considerable progress made in developing useful non-aqueous electrolyte chemistries for Zn anodes has not been matched by correlated progress regarding the development of useful cathode materials. In this work, a new series of spinels, ZnAlxCo2–xO4, are reported and t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.