Abstract

A cm-thick calcite dripstone on the floor of the abandoned Jersey Zinc Mine in southeastern British Columbia, western Canada, consists of a mixture of shrub and radial fibrous elongated columnar crystal fabrics that resulted from Zn2+ and Pb2+ doping of the calcite crystallographic lattice structure. These heavy metal elements were sourced from sulfide mineralized veins in the overlying limestone beds. Zn2+ and Pb2+ substitution for Ca2+ reduced the size of the calcite crystal structure, impacting configuration of the calcite crystal fabrics. Lower concentration levels of dopants resulted in a radial fibrous elongated columnar crystal fabric with high inter-crystalline porosity. Increased levels of Zn2+ and Pb2+ dopants resulted in a crystal splitting process forming the shrub fabric. Growth of normally flat rhombohedral face on the external surface of the dripstone encrustation was disrupted by mixtures of isotropic and anisotropic growth rates. Inhibited growth rates resulted in early stage crystal splitting processes, forming parallel arrays of precursor crystallites aligned as step-down micro-terraces separated by dam-like micro-barrage partitions with normal growth rates. Shrub fabrics developed below the encrustation surface as ion-laden dripwater films infiltrated the 20% to 25% inter-crystalline porosity. This early stage of crystal splitting transitioned into a shrub fabric substrate, each consisting of fan-shaped crystal arrays distributed along a main stem, all in optical continuity. Extreme levels of Zn2+ dopant resulted in split crystal formation of micro-spherulites on the external surface of the dripstone. Spherulite neomorphism occurred, resulting in replacement of the crystallites by an individual calcite spar during envelopment by the columnar crystal domain fabric. The spheroid forms were preserved within the columnar fabric as spheroid zones of Zn-calcite and outlined by microcrystalline ferroan calcite. The shrub fabrics have morphological similarity to dendritic branching shrubs commonly associated with biotic and abiotic travertine and some biotic tufa deposits, which form under very different depositional conditions. Abiotic Zn2+-Pb2+ dopants absorbed into the calcite crystal structure of this mine floor encrustation precluded the necessity for carbonate precipitation from supersaturated carbonate water or precursor microbial induced nucleation sites, unlike similar travertine and tufa shrub fabrics elsewhere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.