Abstract

V6O13 with a nanosheet structure was employed as a cathode material for aqueous zinc metal batteries. V6O13 delivered a high specific capacity of 425 mA h g-1, outstanding rate performance and durable cycling with high capacity retention of 86% after 3000 cycles. Moreover, in situ X-ray diffractometer (XRD), ex situ X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) were employed to ascertain the reaction mechanism of Zn2+ storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call