Abstract

Biodegradable arterial implants based on zinc have been found to suppress neointimal hyperplasia, suggesting that biodegradable materials containing zinc may be used to construct vascular implants with a reduced rate of restenosis. However, the molecular mechanism has remained unclear. In this report, we show that zinc-containing materials can be used to prevent neointimal formation when implanted into the rat aorta. Indeed, neointimal cells were significantly more TUNEL positive and alpha-actin negative at the interface of biodegradable zinc vs. biostable platinum implants, in association with greater caspase-3 activity. Although zinc stimulated extensive neointimal smooth muscle cell (SMC) death, macrophage and proinflammatory markers CD68 and iNOS were not increased in neointimal tissue relative to biostable platinum control implants. Using arterial explants, ionic zinc was confirmed to promote SMC apoptosis by activating the caspase apoptotic signaling pathway. These observations suggest that zinc-containing materials can be used to construct vascular implants such as stents with reduced neointimal hyperplasia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.