Abstract
Chronic and non-healing wounds pose a great challenge to clinical management and patients. Many studies have explored novel interventions against skin wounds, with bioactive peptides, nanoparticles, and hydrogels arousing considerable attention regarding their therapeutic potential. In this study, the prohealing peptide RL-QN15 was loaded into hollow silica nanoparticles (HSNs), with these HSN@RL-QN15 nanocomposites then combined with zinc alginate (ZA) gels to obtain HSN@RL-QN15/ZA hydrogel. The characteristics, biological properties, and safety profiles of the hydrogel composites were then evaluated. Results showed that the hydrogel had good porosity, hemocompatibility, biocompatibility, and broad-spectrum antimicrobial activity, with the slow release of loaded RL-QN15. Further analysis indicated that the hydrogel promoted skin cell proliferation and keratinocyte scratch repair, regulated angiogenesis, reduced inflammation, and accelerated re-epithelialization and granulation tissue formation, resulting in the rapid healing of both full-thickness skin wounds and methicillin-resistant Staphylococcus aureus biofilm-infected chronic wounds in mice. This peptide-based hydrogel provides a novel intervention for the treatment of chronic skin wounds and shows promise as a wound dressing in the field of tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.