Abstract

Zinc is the second most abundant trace element essential for all living organisms. In human body, 30–40% of the total zinc ion (Zn2+) is localized in the nucleus. Intranuclear free Zn2+ sparks caused by reactive oxygen species have been observed in eukaryotic cells, but question if these free Zn2+ outrages could have affected annealing of complementary single-stranded (ss) DNA, a crucial step in DNA synthesis, repair and recombination, has never been raised. Here the author reports that Zn2+ blocks annealing of complementary ssDNA in a sequence-selective manner under near-physiological conditions as demonstrated in vitro using a low-temperature EDTA-free agarose gel electrophoresis (LTEAGE) procedure. Specifically, it is shown that Zn2+ does not block annealing of repetitive DNA sequences lacking CG/GC sites that are the major components of junk DNA. It is also demonstrated that Zn2+ blocks end-joining of double-stranded (ds) DNA fragments with 3′ overhangs mimicking double-strand breaks, and prevents renaturation of long stretches (>1 kb) of denatured dsDNA, in which Zn2+-tolerant intronic DNA provides annealing protection on otherwise Zn2+-sensitive coding DNA. These findings raise a challenging hypothesis that Zn2+-ssDNA interaction might be among natural forces driving eukaryotic genomes to maintain the Zn2+-tolerant repetitive DNA for adapting to the Zn2+-rich nucleus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call