Abstract

Describing the mechanisms of zinc (Zn) accumulation in plants is essential to counteract the effects of excessive Zn uptake in crops grown in contaminated soils. Increasing evidence suggests that there is a positive correlation between nitrate supply and Zn accumulation in plants. However, the role of the primary nitrate transporter NRT1.1 in Zn accumulation in plants remains unknown. In this study, a Zn stress-induced increase in nitrate uptake and an increase in NRT1.1 protein levels in wild-type (Col-0) Arabidopsis plants were measured using microelectrode ion flux and green fluorescent protein (GFP)/β-glucuronidase (GUS) staining, respectively. Both agar and hydroponic cultures showed that mutants lacking the NRT1.1 function in nrt1.1 and chl1-5 (chlorate resistant 1) exhibited lower Zn levels in the roots and shoots of Zn-stressed plants than the wild-type. A lack of NRT1.1 activity also alleviated Zn-induced photosynthetic damage and growth inhibition in plants. Further, we used a rotation system with synchronous or asynchronous uptakes of nitrate and Zn to demonstrate differences in Zn levels between the Col-0 and nrt1.1/chl1-5 mutants. Significantly lower difference in Zn levels were noted in the nitrate/Zn asynchronous treatment than in the nitrate/Zn synchronous treatment. From these results, it can be concluded that NRT1.1 modulates Zn accumulation in plants via a nitrate-dependent pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.