Abstract

Optimizing the active centers through reconstruction is recognized as the key to construct high-performance oxygen evolution reaction (OER) catalysts. Herein, a simple and rapid in situ leaching strategy to promote the self-reconstruction of NiFe-layered double hydroxides (LDHs) catalysts is reported. The trace Zn dopants are introduced in advance by a facile and one-step hydrothermal method, followed by leaching over the electrochemical activation process, which can remarkably reduce the formation potential of NiFeOOH active centers to enable the deeper self-reconstruction for the formation of abundant highly active centers. Moreover, the self-restructured NiFeOOH-VZn cannot only significantly lower the dehydrogenation energy barrier for the transformation from Ni(OH)2 to NiOOH, but also decrease the free energy barrier of rate determining step for the *OH converted to *O through a deprotonation process, thus significantly boosting the OER behaviors. As a proof of concept, the obtained NiFeOOH-VZn catalyst just requires a low overpotential of 240mV at 10mAcm-2, and delivers robust stability at 50mA cm-2 over 120h, which outperforms the benchmark of noble metal RuO2 and those of most non-noble metal catalysts ever reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call