Abstract

Significant Zn isotope fractionation occurs during seafloor hydrothermal activities. Therefore, exploring variations in Zn isotope composition affected by hydrothermal fluids and oxidative processes would help to better understand hydrothermal fluid cycling and sulfide deposition on mid-ocean ridges. In this paper, the Zn isotope compositions of different types of sulfides and their oxidation products obtained from hydrothermal fields on the South Mid-Atlantic Ridge (13–15°S) were analyzed using a Neptune plus MC-ICP-MS. The δ66Zn ratios range from –0.14‰ to +0.38‰, and the average δ66Zn ratio is +0.12±0.06‰ (n=21, 2 SD) for all the studied sulfides and oxidation products. The Cu-rich sulfides have a slightly heavier Zn isotope composition (average δ66Zn=+0.19±0.07‰, n=6) than the Zn-rich sulfides (average δ66Zn=–0.02±0.06‰, n=5). The Zn isotope compositions of the oxidation products are similar to those of the Cu-rich sulfides, with an average δ66Zn ratio of 0.14±0.06‰ (n=10, 2 SD). The Zn isotope compositions of all the samples are generally within the ranges of sulfides from hydrothermal fields on other mid-ocean ridges, such as the East Pacific Rise (9°N, 21°N) and the Trans-Atlantic Geotraverse. However, the average Zn isotope composition indicates the presence of significantly lighter Zn isotopes relative to those reported in the literature (average δ66Zn=+0.39‰). The significant enrichment of the Zn-rich sulfides with light Zn isotopes reveals that kinetic fractionation likely occurs during mineral deposition. Furthermore, the Zn isotope compositions of the sulfides and their oxidation products (average δ66Zn=+0.12‰) are significantly lighter than the average Zn isotope composition of the ocean (δ66Zn=+0.5‰), which could further constrain the modern Zn isotope cycle in the ocean by serving as a sink for light Zn isotopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call