Abstract

There is an urgent need to design and synthesize non-noble metal electrocatalysts (NNMEs) for the replacement of platinum-based electrocatalysts to enhance the sluggish oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells. Herein, Fe-N,S-C materials were fabricated through two steps: first, reprecipitating hemin by adjusting the pH and, then, decorating it with melamine and cysteine in the presence of Zn2+. The resulting Fe-N,S-C-950 (Zn) was prepared after pyrolysis at 950 °C. Using this method, abundant iron-based active species with good dispersion were obtained. The fabrication of more micropores in Fe-N,S-C-950 (Zn) plays a positive role in the improvement of ORR activity. On comparison, Fe-N,S-C-950 (Zn) outperforms Fe-N,S-C-950 and Fe-N-C-950 (Zn) with respect to the ORR due to its larger specific surface area, porous structure, multiple iron-based active sites and N- and S-doped C. Fe-N,S-C-950 (Zn) achieves outstanding ORR performances, including a half-wave potential (E1/2) of 0.844 V and 0.715 V versus a reversible hydrogen electrode (RHE) in 0.1 M KOH and 0.1 M HClO4 solution, respectively. In addition, Fe-N,S-C-950 (Zn) shows an outstanding Zn-air battery performance with an open-circuit voltage (OCV) of 1.450 V and a peak power density of 121.9 mW cm-2, which is higher than that of 20 wt% Pt/C. As a result, the as-prepared electrocatalyst in this work shows the development of the Zn-assisted strategy combined with the assembly of porphyrins as NNMEs for the enhancement of the ORR in both alkaline and acidic solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call