Abstract

Aqueous Zn-ion batteries (ZIBs) are promising candidates for large-scale energy storage due to high safety, abundant reserves, low-cost, and high energy density. However, the reversibility of the metallic Zn anode in the mild electrolyte is still unsatisfactory, due to the Zn dendrite growth, hydrogen evolution, and corrosion passivation. Herein, a Zn-In alloying powder solvent free electrode is proposed to replace the Zn foil in ZIBs. The novel Zn anodes are constructed by a solvent-free manufacturing process with carbons, forming a 3D Zn deposition network and providing uniformly electric field distribution. The In on the Zn powder surface can increase the overpotential for hydrogen evolution and further improve the morphology of Zn deposition against dendrite growth. The Zn solvent-free electrodes enable the Zn-MnO2 batteries with high cathode loading mass of 10-20mg cm-2 to achieve >380 stable cycles. Furthermore, the assembled soft package batteries of 2.4 Ah (52Wh kg-2) is evaluated and the capacity retention is maintained at 80% after 200 cycles at a high areal capacity of 5 mAh cm-2 without gas evolution. This work offers a workable strategy to develop a durable Zn anode for the eventually commercial applications of aqueous Zn-Mn secondary batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call