Abstract
Nostoc muscorum was isolated from a coal mining pit in Chiehruphi, Meghalaya, India, and its potential to remove Zn(II) and Cu(II) from media and the various biochemical alterations it undergoes during metal stress were studied. Metal uptake measured as a function of the ions removed by N. muscorum from media supplemented independently with 20 μmol/L ZnSO4 and CuSO4 established the ability of this cyanobacterium to remove 66% of Zn(2+) and 71% of Cu(2+) within 24 h of contact time. Metal binding on the cell surface was found to be the primary mode of uptake, followed by internalization. Within 7 days of contact, Zn(2+) and Cu(2+) mediated dissimilar effects on the organism. For instance, although chlorophyll a synthesis was increased by 12% in Zn(2+)-treated cells, it was reduced by 26% in Cu(2+)-treated cells. Total protein content remained unaltered in Zn(2+)-supplemented medium; however, a 15% reduction was noticed upon Cu(2+) exposure. Copper enhanced both photosynthesis and respiration by 15% and 19%, respectively; in contrast, photosynthesis was unchanged and respiration dropped by 11% upon Zn(2+) treatment. Inoculum age also influenced metal removal ability. Experiments in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosynthetic inhibitor), carbonyl cyanide m-chlorophenyl hydrazone (an uncoupler), and exogenous ATP established that metal uptake was energy dependent, and photosynthesis contributed significantly towards the energy pool required to mediate metal removals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.