Abstract

Zn-Fe-O nanoparticle systems (Z3F, Z20F and Z60F) were produced by changing the Zn:Fe ratio (0.97 : 0.03, 0.8 : 0.2 and 0.4 : 0.6 in at%, respectively) in Zn(ii)-Fe(iii)-carboxylate precursors. According to X-ray diffraction, Z60F is nearly single-phase ZnFe2O4 (5.9 nm crystallite size), Z20F is a ZnO/ZnFe2O4 nanocomposite consisting of 48.8% ZnFe2O4 (4.7 nm crystallite size), and Z3F is apparently pure ZnO (9.5 nm). We found evidence for a ZnFe2O4 spinel of high inversion degree (80-100%) and with superparamagnetic (SPM) behaviour at room temperature in all three samples by a remarkable correlation between HRTEM, FTIR, XPS, Mössbauer and magnetization analyses. Iron modifies the decomposition process of the precursor and enhances its viscosity, which appears to favour the separation of Zn- and Fe-rich phases. As a consequence, two-phase systems of individual nanocrystals/nanoparticles (ZnO and ZnFe2O4) are formed. The large anisotropy constant, 106-107 erg cm-3, of the ZnFe2O4 nanoparticles and the concentration dependence of their magnetic energy barrier are explained in terms of interparticle interactions interlinked with finite size effects and high inversion degree; these factors also control the other parameters of importance for applications, including the blocking temperature (13-111 K), saturation magnetization (1.08-17.7 emu g-1 at 300 K, 4.6-44.8 emu g-1 at 5 K) and coercivity (85.4-491 Oe at 5 K). Magnetic dynamic results, particularly modelled by the Néel-Brown and Vogel-Fulcher laws, yield fitting parameters which validate the presence of concentration-dependent dipole-like interactions between ZnFe2O4 nanoparticles. A fraction of iron was found in the Fe2+ state, presumably substituting for Zn2+ in zinc oxide; however, the samples behave like ZnFe2O4 SPM nanoclusters/nanoparticles dispersed in a nonmagnetic ZnO particle assembly, rather than Zn(Fe)O dilute magnetic semiconductors. The relevance of the properties of the investigated material for specific applications is highlighted throughout the manuscript.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.