Abstract

We discuss the conditions under which static, finite-energy, configurations of a complex scalar field $\phi$ with constant phase and spherically symmetric norm exist in a potential of the form $V(\phi^*\phi, \phi^N+\phi^{*N})$ with $N\in\mathbb{N}$ and $N\geq2$, i.e. a potential with a $Z_N$-symmetry. Such configurations are called $Z_N$-balls. We build explicit solutions in $(3+1)$-dimensions from a model mimicking effective field theories based on the Polyakov loop in finite-temperature SU($N$) Yang-Mills theory. We find $Z_N$-balls for $N=$3, 4, 6, 8, 10 and show that only static solutions with zero radial node exist for $N$ odd, while solutions with radial nodes may exist for $N$ even.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.