Abstract

Benzene is a common environmental and occupational pollutant, benzene exposure causes damage to hematopoietic system. ZMAT3 is a zinc finger protein which has important biological functions. In this study, benzene-exposed mouse model and ZMAT3 overexpression and low expression hematopoietic stem cells (HSCs) models were constructed to explore the mechanism of ZMAT3 in benzene-induced hematopoietic toxicity. The results showed that benzene increased the expression of ZMAT3 in mouse bone marrow (BM) cells, HSCs and peripheral blood (PB) leukocyte, and the changes in HSCs were more sensitive than BM and PB cells. In addition, overexpression of ZMAT3 decreased the self-renewal ability of HSCs and reduced the HSCs differentiation into myeloid hematopoietic cells, while low expression has the opposite effect. Besides, over and low expression of ZMAT3 both increased the HSCs differentiation into lymphoid progenitor cells. Moreover, bioinformatics analysis suggested that ZMAT3 was associated with TNF-α signaling pathway, and the correlation was confirmed in mouse model. Meanwhile, the results indicated that ZMAT3 promoted TNF-α mRNA processing by binding to the ARE structural domain on TNF-α and interacting with hnRNP A2/B1 and hnRNP A1 proteins, ultimately activating the NF-κB signaling pathway. This study provides a new mechanism for the study of benzene toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call