Abstract

Solvothermal synthesis of zirconium-substituted cobalt ferrite nanoparticles was accomplished by the introduction of zirconium (Zr) in the spinel matrix to obtain a cost-effective and robust electrocatalyst that does not use noble metals. A variation in the cobalt ferrite structure CoFe2–xZrxO4 with Zr (0.1–0.4) substitution has significantly altered the overpotential for the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), leading to an optimum composition of CFZr(0.3). The incorporation of the foreign Zr4+ ion in the cobalt ferrite spinel lattices has effectively enhanced the oxygen evolution reaction (OER) activity in comparison to the parent cobalt ferrite (CF) nanocrystals. However, a nominal change in the ORR current density has been observed due to Zr incorporation. For the OER, the Zr-substituted catalyst has shown a 40 mV negative shift in the overpotential in comparison with the CF nanoparticles at 10 mA/cm2 current density. Interestingly, the in situ graftin...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call