Abstract

Epoxidation of olefins to epoxides is widely recognized as an important unit process in the manufacture of fine chemicals and intermediates. Developing an environmentally benign heterogeneous catalytic system for olefin epoxidation with high activity and selectivity is still a challenge in this research field. Herein, we report our attempts to synthesize novel zirconium phenylphosphonate-anchored methyltrioxorhenium (MTO/ZrPP) heterogeneous catalysts by a conventional impregnation method and evaluate their catalytic performance for epoxidation of cyclohexene using urea–hydrogen peroxide adduct (UHP) as oxidant without the addition of base ligands. The MTO/ZrPP catalyst samples are characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), inductively coupled plasma emission spectrometry (ICP-ES), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and solid-state 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) techniques. Meanwhile, the density functional theory (DFT) calculation is carried out to further understand the structure feature and interactions of the MTO/ZrPP catalyst. It is revealed that MTO is anchored on support surface by the favored hydrogen-bonding interaction between two oxo ligands of MTO and two H atoms from the adjacent phenyls of ZrPP. MTO/ZrPP catalyst displays excellent catalytic activity for cyclohexene epoxidation. Moreover, only cyclohexene oxide production can be obtained under the employed reaction conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.