Abstract

This study investigated the effect of fracture strength and fracture mode characteristics related to reduced interocclusal space on computer-aided design/computer-aided manufacturing (CAD/CAM). ZrO2 fixed partial denture (FPD) frameworks subjected to quasi-static loads. First, two dental implants (4 × 10 mm) were positioned simulating a three-unit FPD (second premolar and second molar abutments). The implants were distributed into two groups: control group (n = 10), positioned at the same level; and the test group (n = 10), where the interocclusal space corresponding to the second molar was reduced by 3 mm in relation to the second premolar to simulate a clinical situation. After FPD wax-up (25-mm long; connector height = 5 mm; connector width = 3 mm, proximal and lingual collar reinforcement), casting was made in a Co-Cr alloy to serve as a prototype. Upon scanning, screw-retained CAD/CAM ZrO2 FPDs were fabricated for each group. Then, FPDs were subjected to quasi-static axial loading until fracture in the mid-occlusal pontic area using a universal testing machine at the crosshead speed of 0.5 mm/min. Next, the samples were analyzed by scanning electronic microscopy (SEM) to describe the fracture characteristics. The mean fracture strength values for the control group (1,747.4 ± 122.3 N) and test group (1,817.7 ± 158.9 N) showed no significant difference (Student t test, P < .124). The SEM images of the fracture sites revealed two cleavage areas in the test group, providing representative sites with increased fracture energy storage in this group compared with the control group. Within the limitations of this study, the results showed that reduced interocclusal space and reduced length did not decrease the fracture strength of the ZrO2 FPD frameworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.