Abstract

A sensitive and effective analytical method was developed to preconcentrate antimony from the bergamot and mint tea samples for its determination at trace levels by slotted quartz tube-flame atomic absorption spectrophotometry (SQT-FAAS) system. The developed method was based on vortex assisted ligandless dispersive solid phase extraction (VA-LDSPE) using zirconium nanoparticles (Zr-NPs) as sorbent material for the adsorption of the target analyte. All variables involved in the DSPE method (pH value, nanoparticle amount, mixing and eluent type/volume) were optimized to boost the absorbance signal of antimony. Using the optimal parameters, the method provided satisfactory detection and quantification limits of 8.0 and 26.8 μg L−1, respectively. A 180 folds enrichment factor was achieved by the developed method when compared with the detection power of the FAAS. Linear range of the proposed method was found to be 30–250 μg L−1, with a coefficient of determination value of 0.9992. The established Zr-NPs-VA-LDSPE-SQT-FAAS method was successfully implemented to bergamot tea samples in order to check accuracy and applicability. The obtained recovery values ranged between 93–102%, and this demonstrated that the complex matrices tested did not affect the accuracy of quantifying antimony.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.