Abstract
By immobilizing the chiral center l-histidine (l-His) into a Zr-based metal-organic framework (MOF) through post-synthetic ligand exchange, a chiral compound MOF-His has been prepared. On this basis, MOF-His is hybridized with Eu3+ ions to obtain the final responsive compound Eu@MOF-His. It is worth noting that the bifunctional material exhibits enantioselective luminescence properties for tryptophan enantiomers. The experimental results demonstrate that tryptophan enantiomers can effectively quench the red-light emission of Eu3+ ions, and also, the quenching rates are various, which may originate from the differences in the interaction between analytes and chiral recognition sites. In addition, Eu@MOF-His can realize the sensing of tryptophan enantiomers in serum. Concurrently, the compound possesses reusability, high sensitivity, and fast response speed, which means that it has the potential to serve as an excellent fluorescent sensor for detecting and identifying tryptophan enantiomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.