Abstract

Zirconium carbide–tungsten (ZrC–W) cermets were prepared by a novel in situ reaction sintering process. Compacted stoichiometric zirconium oxide (ZrO2) and tungsten carbide (WC) powders were heated to 2100°C, which produced cermets with 35 vol% ZrC and 65 vol% W consisting of an interpenetrating-type microstructure with a relative density of ∼95%. The cermets had an elastic modulus of 274 GPa, a fracture toughness of 8.3 MPa·m1/2, and a flexural strength of 402 MPa. The ZrC content could be increased by adding excess ZrC or ZrO2 and carbon to the precursors, which increased the density to >98%. The solid-state reaction between WC and ZrO2 and W–ZrC solid solution were also studied thermodynamically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.