Abstract
The influence of calcination temperature and precursor type used in the preparation of ZrO 2-supported LaCoO 3 catalyst on its behaviour for hydrogen production by oxidative reforming of diesel has been analyzed in terms of LaCoO 3 structure. Four samples have been prepared by wetness co-impregnation with cobalt and lanthanum salts and characterized by means of XRD, BET, SEM-EDX, TXRF and XPS. Physicochemical characterization shows a great influence of the nature of precursors and calcination temperature used in the synthesis on the textural, morphological, surface and structural properties of LaCoO 3 deposited over ZrO 2. The use of nitrate precursors and high calcination temperature leads to the formation of LaCoO 3 perovskite structures of high grain and crystallite size on ZrO 2 support. On the contrary, the catalyst prepared from acetate precursors and calcined at low temperature showed perovskite crystallites of lower size. For this sample, the smaller perovskite crystallites on the catalyst at the beginning of the reaction imply higher and more stable hydrogen production for short-term test aging test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.