Abstract

In the field of bone tissue engineering, biomimetic scaffold utilization is deemed an immensely promising method. The bio-ceramic material Zirconia (ZrO2) has garnered significant attention in the biomimetic scaffolds realm due to its remarkable biocompatibility, superior mechanical strength, and exceptional chemical stability. Numerous examinations have been conducted to investigate the properties and functions of biomimetic structures built from zirconia. Generally, nano-ZrO2 materials have showcased encouraging applications in bone tissue engineering, providing a blend of mechanical robustness, bioactivity, drug delivery capabilities, and antibacterial properties. This review aims to concentrate on the properties and preparations of ZrO2 and its composite materials, while emphasizing its role along with other materials as scaffolds for bone tissue repair applications. The study also discusses the constraints of materials and technology involved in this domain. Ongoing research and development in this area are anticipated to further augment the potential of nano-ZrO2 for advancing bone regeneration therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.