Abstract

This work newly employed monoclinic zirconia (ZrO2) as a promoter to improve CO2 pyrolysis of coffee waste (CW). The CO2 pyrolysis of CW presented the high level of CO production (14.3 mol%) during two stages of non-isothermal (280 to 700 °C) and isothermal pyrolysis (kept at 700 °C). At the same condition, the incorporation of ZrO2 improved the CO generation up to about twice that of CW (29.5 mol%) by possibly inducing more conversion of pyrolytic oil into gas. The characterization results exhibited that ZrO2-impregnated biochar (ZrB) possessed the distinctive surface morphology that highly graphitic- and porous carbon layers were covered by ZrO2 nanoparticle clusters. In a series of adsorption experiments, ZrB composite showed pH-dependent As(V) adsorption and pH neutralization ability. The adsorption proceeded relatively rapid with 95% removal during 120 min in the early stage, followed by 5% removal in the remaining 240 min. The maximum adsorption capacity was found to be 25.2 mg g-1 at final pH 8. The reusability and stability of ZrB were demonstrated in the 6 consecutive cycles of adsorption/desorption. As a result, ZrO2-assisted CO2 pyrolysis can potentially produce fuel gas with high CO fraction and composite adsorbent suitable for As(V) removal in acidic wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call