Abstract
The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies.The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U–Pb dating method, with results of 218.3±1.6Ma (MSWD=0.31, N=15) and 218.5±1.6Ma (MSWD=0.91, N=16), respectively. Meanwhile, the molybdenite Re–Os dating yields a Re–Os isochronal age of 221.4±2.3Ma (MSWD=0.54, N=5) and a weighted mean age of 219.9±0.7Ma (MSWD=0.88). They are quite in accordance with the zircon U–Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting.There are negative εNd(t) values ranging from −3.8 to −2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive εHf(t) values ranging from −0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735Ma to 871Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and their host andesites were mainly derived from a metasomatized mantle, with contamination of about 5–10% crustal rocks during ascending.Comparing with typical porphyry Cu deposits, the Xuejiping porphyry Cu deposit is distinct by strong silicific and phyllic alteration and major stockwork veining mineralization in the ore-bearing porphyries, but lack of pervasive potassic alteration and disseminated mineralization. This indicates that there could be more prospective Cu resources in the Xuejiping ore district.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.