Abstract

The first in situ Hf and U-Pb isotope analyses of zircon separates from Mesozoic granites in southern Tibet identify a significant, previously unknown stage of magmatism. Igneous zircons (n = 34) from a granite within the Gangdese batholith show a weighted mean 206 Pb/ 238 U age of 188.1 ± 1.4 Ma and e Hf (T) (the parts in 10 4 deviation of initial Hf isotope ratios between the zircon sample and the chondritic reservoir) values between +10.4 and +16.8, suggesting predominantly Early Jurassic intrusive activity with a juvenile mantle contribution. Of 40 inherited zircons from two Cretaceous S-type granites in the northern magmatic belt, 23 delineate a slightly older 206 Pb/ 238 U age cluster between 188 and 210 Ma. These zircons have e Hf (T) values from −3.9 to −13.7, yielding crustal Hf model ages from ca. 1.4 to 2.1 Ga, suggesting a major episode of crustal growth in Proterozoic time and remelting of this crust in Early Jurassic time. Combining these with literature data, we interpret the Jurassic Gangdese magmatism as an early product of the Neo-Tethyan subduction that played a long-lasting role in the tectonic evolution of southern Tibet prior to the India-Asia collision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.