Abstract

This work presents zircon U–Pb age and whole-rock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a 206Pb/238U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of TiO2 (2.62 wt%–4.25 wt%) and P2O5 (0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N = 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call