Abstract

The potential petrogenetic link between a crystal-poor rhyolite (the Rhyolite Canyon Tuff) and its associated subvolcanic intrusion and crystal-rich post-caldera lavas from Turkey Creek, Arizona (USA), is examined using zircon chemical abrasion–thermal ionization mass spectrometry U-Pb geochronology and inductively coupled plasma mass spectrometry trace element analyses. U-Pb ages indicate that zircon growth within the rhyolite and the dacite-monzonite porphyry magmas was coeval over ∼300 k.y. prior to the large eruptive event. Trends in zircon trace elements (Hf, Y/Dy, Sm/Yb, Eu/Eu*) through time in the dacitic-monzonitic units and rhyolite reflect melt evolution dominated by crystal fractionation. Importantly, the Y/Dy ratio in zircons in both units remains mostly similar for the first ∼150 k.y. of the system’s evolution, but the dominant population in the rhyolitic unit diverges from that of the dacite-monzonite porphyry ∼150 k.y. before eruption. We interpret this divergence in trace element composition to record the assembly time of the melt-rich cap within its intermediate mush zone in the upper crustal reservoir. These results are consistent with (1) a connection between plutonic and volcanic realms in the upper crust, (2) a protracted time scale for constructing an intermediate mush large enough to hold 500 km 3 of rhyolite, and (3) the prolonged extraction of that melt prior to eruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.