Abstract
ABSTRACT Dating detrital zircon grains from sands and sandstones has become an important geological technique for determining sediment provenance and dispersal patterns. Here, we report what we believe to be the first provenance study of zircon grains extracted by dissolving large samples of pelagic limestone. Our samples come from the Paleocene section of the Umbria-Marche Apennines, Italy. Recovery of these zircon grains was a fortunate by-product of a study on chromite grains aimed to determine the kinds of meteorites that have fallen on Earth through time. The zircons we recovered included both euhedral crystals interpreted as airborne ash from volcanic eruptions of the same age as the sediment in which they were found, and rounded grains interpreted as windblown detrital material with a history of sediment transport, probably derived from desert regions. This study focuses on the rounded grains, to provide constraints on the source region from which they came. Samples from five levels in the 12 m immediately above the Cretaceous-Paleogene boundary at Gubbio, Italy, yielded detrital zircon grains with ages clustered in eight bands extending back to the Neoarchean. A previous study of this outcrop using proxies for the noncarbonate detrital content had suggested a source region for this dust either in North Africa or in Central Asia. A comparison of our dates from the actual dust grains to geochronological studies from the literature suggests source regions in North Africa and/or the Iberian Peninsula, rather than in Central Asia. In reaching this conclusion, we considered the orogenic events that may have produced each of the eight age bands, the specific source regions that may have supplied zircons from each age group, and the implications for paleoclimate (especially aridity) and paleowind conditions for the few million years just after the Cretaceous-Paleogene boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.