Abstract

The microgeochemistry of zircon was studied in three samples: charnockite gneiss (1594), charnockite (1594a), and migmatite leucosome Lc4 (1594c). Prismatic (Zrn I) and oval (Zrn II) zircon morphotypes are distinguished in the first two samples. Most zircon grains consist of two-phase cores and overgrowth rims variable in thickness. The average weighted concordant U–Pb age of Zrn II cores from charnockite gneiss is 2436 ± 10 Ma. The concordant ages of Zrn I and Zrn II cores from charnockite are 2402 ± 16 Ma and 2453 ± 14 Ma, respectively. Some overgrowth rims are 1.9–2.1 Ga in age. In leucosome Lc4, all measured prismatic zircon crystals yielded a discordant age of 1942 ± 11 Ma (the upper intersection of discordia with concordia). These zircons are strongly altered and anomalously enriched in U and Th. Zrn I grains are enriched relative to Zrn II in REE, Li, Ca, Sr, Ba, Hf, Th, and U. Zrn I is considered to be a product of melt crystallization or subsolidus recrystallization in the presence of melt. Zrn II is relict or crystallizing from melt and then partly fused again. Zrn I from charnockite gneiss and especially from charnockite are markedly altered and have a more discordant age than Zrn II. This is probably related to concentration of fluid in the residual melt left after zircon crystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.