Abstract

SIMS zircon U–Pb dating, geochemical and Sr–Nd isotopic data are presented for the Late Paleozoic volcanic rocks from Tost area in Mongolia, the southern portion of the Central Asian Orogenic Belt (CAOB). The Tost volcanic rocks show a bimodal feature characterized by a mafic member of basalt and a felsic component of rhyolite, which are temporally and spatially related each other, implying a genetic relationship. Zircon U–Pb isotopic data of the rhyolite constrain the Tost bimodal magmatism occurring from 355Ma to 320Ma. The Tost basalt is characterized by high abundances in Th, U and Pb, slightly enriched LREE patterns and low HFSE/LREE ratios. These features, together with their OIB-like isotopic signature ((87Sr/86Sr)i=0.7039378–0.704397, εNd(t)=3.55–5.02), suggest that they were likely derived from low-degree partial melting of a metasomatized asthenospheric mantle source with subordinate input of subduction components. The Tost rhyolite, which displays an intimate affinity to Tost basalt, with enrichment in Th, U and Pb, depleted in Nb, Ta and Ti, and gently right-tilted REE patterns, is inferred to be generated by partial melting of a juvenile lower crustal source heated by underplating mafic magmas which rise from asthenosphere during continued rifting. The Tost bimodal volcanic rocks are comparable both in age and composition with those in the East Tianshan, which together constitute an E–W-oriented belt of bimodal volcanic rocks, marking an Early Carboniferous rifting event. Considering regional geology, we propose that the rifting took place in a back-arc extensional setting, probably induced by the subduction of the Dzungaria Ocean between the East Tianshan and Junggar-Kazakhstan plate during the Early Carboniferous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call