Abstract

AbstractAssessments are made of the corrosion characteristics of spent nuclear fuel Zircaloy cladding in a Yucca mountain repository environment and the potential for the cladding to provide protection against radionuclide release following waste package failure. Considerations and assumptions includes a waste package life near 10,000 years and air-saturated water contacted with waste package corrosion product goethite, based on the near-field geochemical environment evaluated in the Yucca Mountain Viability Assessment [3]. Literature corrosion data (general, pitting, and localized crevice attack) are evaluated on the basis of these conditions and the expected chemical environments that can result on the surface of the fuel. General corrosion of Zircaloy is expected to be negligible and result in a lifetime of the SNF cladding of several hundred thousand years, approaching a million years. General surface pitting is not expected. Effects of crevice localized corrosion for periods beyond 10,000 years are uncertain and require modeling development and experimental characterization. Details of the evaluations that provide the basis for the conclusions are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call