Abstract

From a basic probabilistic argumentation, the Zipfian distribution and Benford’s law are derived. It is argued that Zipf’s law fits to calculate the rank probabilities of identical indistinguishable objects and that Benford’s distribution fits to calculate the rank probabilities of distinguishable objects. i.e. in the distribution of words in long texts all the words in a given rank are identical, therefore, the rank distribution is Zipfian. In logarithmic tables, the objects with identical 1st digits are distinguishable as there are many different digits in the 2nd, 3rd… places, etc., and therefore the distribution is according to Benford’s law. Pareto 20 - 80 rule is shown to be an outcome of Benford’s distribution as when the number of ranks is about 10 the probability of 20% of the high probability ranks is equal to the probability of the rest of 80% low probability ranks. It is argued that all these distributions, including the central limit theorem, are outcomes of Planck’s law and are the result of the quantization of energy. This argumentation may be considered a physical origin of probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.