Abstract
AbstractD. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex. In this paper, we first prove that the crossing number is still additive for the zip product under a weaker condition. Based on the new condition, we then establish some general expressions for bounding the crossing numbers of (capped) Cartesian product of trees with graphs (possibly without dominating vertex). Exact values of the crossing numbers of Cartesian product of trees with most graphs of order at most five are obtained by applying these expressions, which extend some previous results due to M. Klešč. In fact, our results can also be applied to deal with Cartesian product of trees with graphs of order more than five.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.