Abstract

BackgroundZingiber officinale, generally known as ginger, contains bioactive phytochemicals, including gingerols and shogaols, that may function as reducing agents and stabilizers for the formation of nickel nanoparticles (Ni-NPs). Ginger extract-mediated nickel nanoparticles were synthesized using an eco-friendly method, and their antibacterial, antioxidant, antiparasitic, antidiabetic, anticancer, dye degrading, and biocompatibility properties were investigated.MethodsUV–visible spectroscopy, fourier transform infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy were used to validate and characterize the synthesis of Ni-NPs. Agar well diffusion assay, alpha-amylase and glucosidase inhibitory assay, free radical scavenging assay, biocompatibility assay, and MTT assay were used to analyse the biomedical importance of Ni-NPs.ResultsSEM micrograph examinations revealed almost aggregates of Ni-NPs; certain particles were monodispersed and spherical, with an average grain size of 74.85 ± 2.5 nm. Ni-NPs have successfully inhibited the growth of Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris by inducing membrane damage, as shown by the absorbance at 260 nm (A260). DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals were successfully scavenged by Ni-NPs at an inhibition rate of 69.35 ± 0.81% at 800 µg/mL. A dose-dependent cytotoxicity of Ni-NPs was observed against amastigote and promastigote forms of Leishmania tropica, with significant mortality rates of 94.23 ± 1.10 and 92.27 ± 1.20% at 1.0 mg/mL, respectively. Biocompatibility studies revealed the biosafe nature of Ni-NPs by showing RBC hemolysis up to 1.53 ± 0.81% at 400 µg/mL, which is considered safe according to the American Society for Materials and Testing (ASTM). Furthermore, Ni-NPs showed antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes at an inhibition rate of 22.70 ± 0.16% and 31.23 ± 0.64% at 200 µg/mL, respectively. Ni-NPs have shown significant cytotoxic activity by inhibiting MCF-7 cancerous cells up to 68.82 ± 1.82% at a concentration of 400 µg/mL. The IC50 for Ni-NPs was almost 190 µg/mL. Ni-NPs also degraded crystal violet dye up to 86.1% at 2 h of exposure.ConclusionsIn conclusion, Zingiber officinale extract was found successful in producing stable nanoparticles. Ni-NPs have shown substantial biomedical activities, and as a result, we believe these nanoparticles have potential as a powerful therapeutic agent for use in nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.