Abstract
Zinc ions and modified amyloid-beta peptides (Aβ) play a critical role in the pathological aggregation of endogenous Aβ in Alzheimer’s disease (AD). Zinc-induced Aβ oligomerization is mediated by the metal-binding domain (MBD) which includes N-terminal residues 1–16 (Aβ1–16). Earlier, it has been shown that Aβ1–16 as well as some of its naturally occurring variants undergoes zinc-induced homodimerization via the interface in which zinc ion is coordinated by Glu11 and His14 of the interacting subunits. In this study using surface plasmon resonance technique, we have found that in the presence of zinc ions Aβ1–16 forms heterodimers with MBDs of two Aβ species linked to AD: Aβ containing isoAsp7 (isoAβ) and Aβ containing phosphorylated Ser8 (pS8-Aβ). The heterodimers appear to possess the same interface as the homodimers. Simulation of 200 ns molecular dynamic trajectories in two constructed models of dimers ([Aβ1–16/Zn/Aβ1–16] and [isoAβ1–16/Zn/Aβ1–16]), has shown that conformational flexibility of the N-terminal fragments of the dimer subunits is controlled by the structure of corresponding sites 6–8. The data suggest that isoAβ and pS8-Aβ can be involved in the AD pathogenesis by means of their zinc-dependent interactions with endogenous Aβ resulting in the formation of heterodimeric seeds for amyloid aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.