Abstract

A zinc-finger motif recognizes specific sequences on the double helical structure of DNA. This sequence recognition property offers great promise for various biotechnology applications. Accordingly, it is crucially important to characterize zinc-finger binding characteristics for further developments. Although the gel shift assay or phage display is traditionally used for determining the binding characteristics of zinc-fingers for double stranded DNA, in the present study we utilize electrospray ionization mass spectrometry as an advanced and convenient characterization tool because of the rich information it provides, and its quantitative sensitivity, operational simplicity, and no need for radioactive labeling. Here we demonstrate the use of negative-ion electrospray ionization mass spectrometry for competition-based quantitative comparison of the zinc-finger motif sequence specificity, stoichiometry, and metal ion dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.