Abstract
Myocardial zinc dyshomeostasis is associated with caspase-3 activation, ErbB2 degradation and apoptosis during hypoxia/reoxygenation. Zinc pyrithione replenishes intracellular zinc, suppresses caspase-3, augments ErbB2 levels and improves cell survival. We hypothesize that zinc is capable of modulating redox and endoplasmic reticulum (ER) stress in the setting of cardiomyocyte hypoxia-reoxygenation. Hypoxia/reoxygenation lowered intracellular zinc, increased ER as well as oxidative stress in H9c2 cells, both of which were effectively attenuated by zinc supplementation. Silencing of gp91phox attenuated oxidative and ER stress, decreased caspase-3 activation and improved cell survival. Mimicking the oxidative insult using 50μM H2O2 increased the caspase-3 activity that correlated with decreased ErbB2 levels, concomitant with augmented ER stress. N-acetyl cysteine (NAC) administration completely suppressed ER stress as well as caspase-3 activity. Zinc depletion using TPEN also resulted in lowered ErbB2 and increased apoptosis, along with NOX2 mRNA upregulation, increased oxidative and ER stress. Repletion with zinc suppressed NOX2 mRNA, lowered oxidative as well as ER stress and decreased cell death. These results suggest that zinc dyshomeostasis, along with oxidative stress contribute to the unfolded protein response during myocardial H/R and that zinc replenishment corrects zinc homeostasis, alleviates associated stress and improves cardiomyocyte survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.