Abstract

The study aims to investigate zinc biosorption by strains of lactobacilli and bifidobacteria with a view to exploit them as organic matrixes for zinc dietary supplementation. Sixteen human strains of Lactobacillus and Bifidobacterium were assayed for zinc uptake. The minimum inhibitory concentration of zinc salts differed among the strains, but was never below 15 mmol L−1. When cultured in MRS broth containing 10 mmol L−1 ZnSO4, all the strains were capable of accumulating zinc in the range between 11 and 135 μmol g−1. The highest amount of cell-bound zinc was obtained in L. acidophilus WC 0203. pH-controlled batch cultures of this strain revealed that zinc uptake started in the growth phase, but occurred mostly during the stationary phase. Pasteurized and viable cultures accumulated similar amount of zinc, suggesting that a nonmetabolically mediated mechanism is involved in zinc uptake. These results provide new perspectives on the specific use of probiotics, since L. acidophilus WC 0203 could function as an organic matrix for zinc incorporation. The bioavailability of Lactobacillus-bound zinc deserves to be investigated to provide a future basis for optimization of zinc supplementation or fortification.

Highlights

  • Zinc is one of the metal ions essential to life

  • These results provide new perspectives on the specific use of probiotics, since L. acidophilus WC 0203 could function as an organic matrix for zinc incorporation

  • The present study investigated zinc biosorption by 16 strains of lactobacilli and bifidobacteria, in the perspective to evaluate whether they can function as organic matrixes for zinc incorporation

Read more

Summary

Introduction

Zinc is one of the metal ions essential to life. After iron, it is the second most abundant transition metal ion in living organisms, including humans [1]. Zinc is present in all the tissues, fluids, and organs within the human body, for a total body content of approximately 1.4–2.3 g. It is necessary for catalytic, structural, and regulatory functions in hundreds of enzymes and in thousands of protein domains. The recommended dietary intake for zinc varies with age and physiological status, ranging between 5 and 18 mg day−1. Severe zinc deficiency causes a number of adverse physiological consequences on the epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems [4, 6, 7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call