Abstract

Previous studies have suggested that phosphorus (P) deficiency can increase the sensitivity of microalgae to toxic trace metals, potentially due to reduced metal detoxification at low cell P quota. The existing evidence is, however, inconsistent. This study was set up to determine the combined effects of zinc (Zn) and P supplies on Zn and P bioaccumulation and growth of the green microalgae Pseudokirchneriella subcapitata. Zinc toxicity was investigated in (i) a 24h growth rate assay with cells varying in initial cell P quota (0.5–1.7% P on cell dry weight) with no supplemental P during Zn exposure (Expt. 1) and in (ii) a 48h growth assay initiated with cells at the end of a 14-days steady state culture at three P addition rates (RARs) between 0.8 and 1.6day−1 (Expt.2). The solution Zn concentrations required to reduce final cell density by 10% relative to control (EbC10) were 5-fold (Expt.1) or 2-fold (Expt.2) lower at the highest P supply than at the lowest P supply, i.e. Zn was more toxic at higher P supply, in contrast with the suggestions from previous studies. Cell P quota increased with increasing Zn in the exposure solution (Expt.2), thereby partially overcoming P deficiency under moderate Zn toxicity compared to low Zn exposure. Similarly, cell Zn increased with increasing P supply, potentially induced by Zn–P complexation or precipitation inside the cell. A dynamic growth model accounting for effects of external Zn and internal P on the specific growth rate was calibrated to all data. This model shows that the effect of solution Zn on specific growth rate (ErC50) was statistically unaffected by cell P quota. In contrast, this model predicts that the EbC10 (i.e. EC10 based on cell numbers) varies with P supply because cell P depends on external P and Zn. Moreover, scenario analysis predicts even contrasting trends of the EbC10 with increasing P supply depending on the duration of the growth assay and the P supply scenario. Our data at two experimental scenarios and the prediction under various relevant scenarios suggest a weaker effect of secondary stress factor (Zn) when nutrient deficiency (first stress factor) is prevailing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call