Abstract

The purpose of this study was to evaluate the effects of zinc (Zn) supplementation on metabolic and neuroinflammatory parameters in cafeteria diet (CAF)-induced obesity in Wistar rats. Animals were divided into four groups: control diet (CT); CT+Zn; CAF; CAF+Zn. The diet was administered for 20 weeks; Zn treatment (10 mg/kg/d) started at week 16 and it was conducted until the end of the diet protocol. Weight gain, visceral fat, and plasma levels of glucose, triglycerides, insulin, TNF-α, and IL-6, as well as homeostatic model assessment of insulin resistance, were assessed. Glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1) expression in the cerebral cortex and toll-like receptor 4 (TLR-4) in the cerebral cortex and hippocampus were evaluated. Memory was assessed by the novel object recognition test. CAF diet increased weight gain, visceral fat, and plasma glucose, triglyceride, and TNF-α levels. Zn reversed the hyperglycemia caused by CAF diet and reduced IL-6 levels. In the cerebral cortex, GFAP was similar between groups; Iba-1 was increased by CAF diet but reduced in the CAF+Zn group. Zn reduced CAF-dependent TLR-4 increase in the hippocampus but not in the cerebral cortex. CAF-fed animals showed impaired recognition memory, whereas Zn reversed it. These findings demonstrate that Zn partially reverted obesity-related metabolic dysfunction and reduced neuroinflammation and memory deficit caused by CAF diet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call