Abstract

Apohemoprotein is focused on the field of theranostics, serving as a porphyrin carrier. Hemoglobin (Hb) consists of α2β2 tetramer with iron(II)-protoporphyrin IX (heme) bound to each globin. However, heme-removed Hb (apoHb) causes dissociation at αβ interfaces and aggregation under physiological conditions. We synthesized a stable apoHb derivative comprising intramolecular-crosslinked apoHb (apoXHb) and human serum albumin (HSA), apoXHb-HSA3. ApoXHb-HSA3 engendered no aggregates in the physiological solutions. Moreover, apoXHb-HSA3 was reconstituted with zinc(II)-protoporphyrin IX (ZnP), generating ZnXHb-HSA3, a potent photosensitizer for photodynamic therapy (PDT). The photophysical properties of ZnXHb-HSA3 were identical to those of zinc-substituted XHb (ZnXHb). Cellular uptake behavior was evaluated using various cancer cell lines. ZnXHb-HSA3 released ZnP around the cells, and the free ZnP penetrated cell membranes. In contrast, protein units were not observed within the cells. ZnXHb-HSA3 showed no cytotoxicity under dark conditions and demonstrated superior PDT activity in comparison to naked ZnXHb. ZnXHb-HSA3 acts as an innovative porphyrin carrier for enhanced PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.