Abstract
This work deals with the study of zinc self-diffusion in ZnO polycrystal of high density and of high purity. The diffusion experiments were performed using the 65Zn radioactive isotope as zinc tracer. A thin film of the tracer was deposited on the polished surface of the samples, and then the diffusion annealings were performed from 1006 to 1377oC, in oxygen atmosphere. After the diffusion treatment, the 65Zn diffusion profiles were established by means of the Residual Activity Method. From the zinc diffusion profiles were deduced the volume diffusion coefficient and the product dDgb for the grain-boundary diffusion, where d is the grain-boundary width and Dgb is the grain-boundary diffusion coefficient. The results obtained for the volume diffusion coefficient show good agreement with the most recent results obtained in ZnO single crystals using stable tracer and depth profiling by secondary ion mass spectrometry, while for the grain-boundary diffusion there is no data published by other authors for comparison with our results. The zinc grain-boundary diffusion coefficients are ca. 4 orders of magnitude greater than the volume diffusion coefficients, in the same experimental conditions, which means that grain-boundary is a fast path for zinc diffusion in polycrystalline ZnO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.