Abstract

Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P.aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A.baumannii and S.aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P.aeruginosa, A.baumannii, and S.aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA-approved agent. Here we report data that indicate that the antimicrobial properties of silver sulfadiazine ointments can be significantly improved by the addition of the antifungal zinc pyrithione, suggesting that such combinations may provide an improved therapeutic option for the topical treatment of wound infections.

Highlights

  • Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics

  • A library of 853 FDAapproved drugs was screened for agents that displayed antimicrobial activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase (AK)-based bactericidal assay [24]

  • The nature and complexity of wound infections are highly depenmsphere.asm.org 9 dent on the type of wound as well as on underlying patient comorbidities, common etiologic organisms identified in most wounds include S. aureus, P. aeruginosa, A. baumannii, E. coli, and Enterococcus spp. [5, 6, 30]

Read more

Summary

Introduction

Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. P. aeruginosa or S. aureus or both are the predominant causes of surgical wound site infections among patients undergoing spine [9], coronary artery bypass grafting [10], abdominal [11], and orthopedic [12] procedures Their propensity to form biofilms, a bacterial physiological growth state that is recalcitrant to conventional antibiotics and host defense processes, has been well documented to contribute to chronic diabetic ulcer pathogenesis and may play a role in mediating infection in burn and postsurgical patients [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.