Abstract

The study was conducted to investigate the effects of maternal mercury exposure on fetal rat development and zinc protection in mercury-exposed rats. Pregnant rats were subjected to zinc sulfate pre-feeding, mercury exposure and zinc sulfate co-feeding. The control rats were administered distilled water. On day 19, the placental weight, overall weight, size and tail length of fetal rats, mercury content and S100B level in the placenta were determined using Western blot analysis. Compared with the control, mercury exposure at 2.0 mg/kg.d significantly reduced placental weight and fetal development, resulting in reduced fetal weight, size and tail length, while zinc pre-feeding increased placental weight and other fetal developmental parameters. Compared with mercury exposure, co-feeding with zinc significantly reduced mercury-induced injury in the fetal rats. S100B and mercury content levels were significantly elevated in rats maternally exposed to methylmercury chloride, compared with the unexposed control, while co-feeding with methylmercury chloride and zinc sulfate significantly reduced S100B and mercury levels in the placenta. Maternal exposure to mercury results in increased S100B in the placenta. Zinc sulfate feeding could reduce S100B and mercury levels, thereby protecting the rats from mercury damage. S100B level may be used to measure the antagonism between zinc and mercury during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.